DSID-4 Example Calculation for Applying Regression Information in the Statistical Results Table

Contents

Introduction and Definition of Terms
Important Notes
Example Calculations
 1. Calculating Predicted Mean Value
 2. Calculating Standard Error of the Mean
 3. Calculating Standard Error of the Predicted Observation

Introduction and Definition of Terms

The parameter values in Table 1 can be used to apply the regression results for DSID-3 to labeled levels for ingredients in MVM and omega-3 fatty acid supplement products. Calculations for the following list of terms are defined below:

PM% = Predicted Mean Percent Difference from Label
PM = Predicted Mean Amount per Serving

SEM% = Standard Error (SE) of the Predicted Percent Difference from Label (Mean)
SEM = SE for Predicted Mean

SEO% = SE of the Predicted Percent Difference from Label (Individual Observation)
SEO = SE for Predicted Observation

Important Notes

When performing these calculations, the parameter values must not be rounded. Rounding parameter values will produce inaccurate results.
The Excel spreadsheet for Table 1 may not display all of the digits for a parameter value. Please click on the individual cell to get the complete value, and do not rely on the cell as displayed.
E represents "times ten raised to the power of." Therefore, -2.26323E-05 is equivalent to -2.26323 x 10^{-5}
DSID reports results to 3 significant digits for PM and PM%, and to 2 significant digits for SEM and SEO.
Example Calculations

These example calculations are for a children's (age 4 and up group) multivitamin/mineral supplement with a labeled level of 30 mcg of iodine. Each parameter is assigned a column letter in this document, so as to make the example calculations easier to read.

1. Calculating Predicted Mean Value

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prediction of the Mean Intercept</td>
<td>Prediction of the Mean Linear</td>
<td>Prediction of the Mean Quadratic</td>
</tr>
<tr>
<td></td>
<td>86.63869248</td>
<td>-1.806314473</td>
<td>0.009299788</td>
</tr>
</tbody>
</table>

Predicted Percent Difference from Label (PM%)
PM% = (Column A) + [(Column B) * (Label Amount)] + [(Column C) * (Label Amount^2)]
PM% = (86.638692482013) + [(-1.80631447346639) * (30)] + [(0.00929978820645634) * (30^2)] = 40.819067663832

Predicted Mean Amount per Serving (PM)
PM = (Label Amount) * [1 + (PM% / 100)]
PM = (30) * [1 + (40.819067663832/100)] = 42.2457202991496

2. Calculating Standard Error of the Predicted Mean

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE of the Predicted Mean Intercept</td>
<td>SE of the Predicted Mean Linear</td>
<td>SE of the Predicted Mean Quadratic</td>
<td>SE of the Predicted Mean Cubic</td>
<td>SE of the Predicted Mean Quartic</td>
<td>SE of the Predicted Mean Quintic</td>
<td>SE of the Predicted Mean Sextic</td>
<td>SE of the Predicted Mean Septic</td>
<td>SE of the Predicted Mean Octic</td>
</tr>
<tr>
<td></td>
<td>17.77804514</td>
<td>0.29044245</td>
<td>-0.049325526</td>
<td>0.00154952</td>
<td>-2.1744E-05</td>
<td>1.53E-07</td>
<td>-4.68E-10</td>
<td>0</td>
<td>2.23E-15</td>
</tr>
</tbody>
</table>
SE of the Predicted Percent Difference from Label for Mean (SEM)

\[
\text{SEM}\% = (\text{Column D}) + [(\text{Column E}) \times (\text{Label Amount})] + [(\text{Column F}) \times (\text{Label Amount}^2)] + [(\text{Column G}) \times (\text{Label Amount}^3)] \\
+ [(\text{Column H}) \times (\text{Label Amount}^4)] + [(\text{Column I}) \times (\text{Label Amount}^5)] + [(\text{Column J}) \times (\text{Label Amount}^6)] \\
+ [(\text{Column K}) \times (\text{Label Amount}^7)] + [(\text{Column L}) \times (\text{Label Amount}^8)]
\]

\[
\text{SEM}\% = (17.7780451447202 + [(0.290442449580882) \times (30)] + [(-0.0493255260170493) \times (30)] + [(0.00154951656276245) \times (30)] \\
+ [(-0.000021744123917518) \times (30)] + [(1.52656478992153E-07) + (30)] \\
+ [(-4.6814831782059E-10) \times (30)] + [0 \times (30)] \\
+ [(2.23461526026106E-15) \times (30)] = 9.69229046918585
\]

SE for Mean (SEM)
\[
\text{SEM} = (\text{Label Amount}) \times [(\text{SEM}\%) / 100]
\]
\[
\text{SEM} = (30) \times [(9.69229046918585) / 100] = 2.9076871407575
\]

3. Calculating Standard Error of the Predicted Observation

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE of the Predicted</td>
</tr>
<tr>
<td>Observation</td>
<td>Observation</td>
<td>Observation</td>
<td>Observation</td>
<td>Observation</td>
<td>Observation</td>
</tr>
<tr>
<td>Intercept</td>
<td>Linear</td>
<td>Cubic</td>
<td>Quartic</td>
<td>Quintic</td>
<td></td>
</tr>
<tr>
<td>37.7663905</td>
<td>-0.4876034</td>
<td>0.009366865</td>
<td>-7.196E-05</td>
<td>1.90E-07</td>
<td>0</td>
</tr>
</tbody>
</table>

SE of the Predicted Percent Difference from Label for Individual Observation (SEO%)

\[
\text{SEO}\% = (\text{Column M}) + [(\text{Column N}) \times (\text{Label Amount})] + [(\text{Column O}) \times (\text{Label Amount}^2)] + [(\text{Column P}) \times (\text{Label Amount}^3)] \\
+ [(\text{Column Q}) \times (\text{Label Amount}^4)] + [(\text{Column R}) \times (\text{Label Amount}^5)]
\]

\[
\text{SEO}\% = (37.7663905043796) + [(-0.487603358893001) \times (30)] + [(0.00936868508222579) \times (30)] \\
+ [(-0.0000719608413513465) \times (30)] + [(1.89684186803514E-07) \times (30)] = 29.7808077864173
\]

SE for Predicted Observation (SEO)
\[
\text{SEO} = (\text{Label Amount}) \times [(\text{SEO}\%) / 100]
\]
\[
\text{SEO} = (30) \times [29.7808077864173 / 100] = 8.93424233592519
\]